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Abstract. We present a formalism for lhe calculation of the scaltering of eleammagnetic 
Waves by a substitutionally disordered hvo-dimensional array of spherical particles. The 
formalism, which constitntes M extension of lhe coherent-pakntial approximation scheme to 
elecvomagnetic waves is valid for any hequency of the incident wave and for any size andor 
concentration of the particles. We demonstrate the applicability of our formalism by applying it 
to the evaluation of the absorbance of disordered arrays of plasma spheres. 

1. Introduction 

In ow earlier work [ 1.21 we have shown how to calculate the scattering of electromagnetic 
(EM) waves from an ordered two-dimensional (ZD) may  of spherical particles on a substrate 
of a different dielectric function. We have applied the method to systems of practical 
interest, namely metallic particles with a diameter of about 100 A or so on a dielectric 
substrate, and considered the effect of coverage, size of particles, polarization of light and 
other factors on the transmittance, reflectance and absorbance of light by such systems 
[2,3]. The arrangement of the particles on the substrate is very rarely periodic in an actual 
experiment (see, e.g., [4], and references therein) and it is therefore important to he able 
to take into account the effect of disorder on the optical properties of such systems. When 
the disorder is weak, this can be taken into account, to some degree, by the so-called 
average T-matrix approximation (ATA) as we have done in previous work [3,5]. It is well 
known, however, from the corresponding problem of electron scattering in substitutionally 
disordered alloys, that an improved treatment of disorder can be obtained from the so-called 
coherent-potential approximation (CPA) [6,7]. In fact, Liebsch and Persson [SI and Persson 
and Liebsch [9] have already applied what is essentially a CPA scheme to the evaluation of 
EM scattering by three-dimensional (3D) and 2D arrays of metallic particles in the electrostatic 
approximation. Their treatment is valid in the long-wavelength limit and then only when 
the interparticle distance is relatively large, which means a low coverage in the case of 
particles on a substrate. 

More recently, Wang et a1 [lo] developed a multiple-scattering Green function 
formalism for EM waves and applied it to the calculation of the frequency band structure 
of a crystal (diamond structure) of touching vacuum spheres in a dielectric medium. An 
extension of their formalism to 3D substitutionally disordered systems under the CPA was 
also proposed in the same paper. 
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In this article we present the first calculations of the transmittance, reflectance and 
absorbance of EM waves by 2D arrays of particles using the CPA scheme to solve Maxwell's 
equations exactly. Our formalism can be used together with a doubling-layer technique 
[ I I ,  121 to treat also substitutional disorder in 3D layered structures. In section 2 we present 
the formalism, which allows one to calculate for any frequency of the incident radiation the 
scattering of EM waves by a disordered 2D array of spheres. We note that our formalism 
applies equally well to arrays of particles of any shape as long as the particles remain 
distinct from each other (i.e. do not overlap). In section 3 we demonstrate the method by 
applying it to specific examples. 

2. Theory 

2.1. The model 

We assume a ?D lattice in the x-y plane. The sites R, of the lattice are occupied by 
spheres (the centres of the spheres coincide with the lattice points) of type A, B, C, . . .. 
The spheres do not overlap each other and their arrangement on the lattice is arbitrary 
(non-periodic). The spheres A, B, C, . . . are characterized by relative dielectric functions 
EA(W) ,  E.@) .  CC(W).  , . ., respectively, and the surrounding medium by a relative dielectric 
function <(U).  

The CPA consists in replacing the disordered arrangement of spheres by an ordered 
(periodic) arrangement of identical effective scatterers occupying all the lattice sites. The 
effective scatterer need not be, and in fact is not, a Spherical scatterer and its scattering 
properties are a rather complicated function of EA, EB, E C . .  . ,. The properties of the CPA 
scatterer and the justification of the method are exactly the same as in the case of electron 
scattering by a non-periodic arrangement of atomic scatterers [6,7]. 

Once the scattering properties of the effective scatterer have been established, the 
scattering of an incident wave by the ordered array of these scatterers proceeds in the 
manner described earlier [ I ,  21. 

2.2. The CPA scatterer 

The electric field component E(r ,  t )  = Re[l?(r) exp(-iot)] of the EM waves incident on 
and scattered by a sphere centred on the origin of coordinates is expanded in spherical 
waves as follows [1,2]: 

where k = [ C ( W ) ] " ~ O / C  is the wavenumber. Xfm(+) are the usual vector spherical 
harmonics; q ( k r )  = j , (kr )  for the incident wave and q(kr)  = h:(kr)  for the scattered 
wave, where jl and h: denote the spherical Bessel and the outgoing spherical Hankel 
functions, respectively. As written, the above expression applies outside the scatterer. A 
similar expression applies inside the scatterer. The coefficients a!,,,,, where U = E or H, 
in equation (1) are constants to be determined. 

The expansion coefficients ak,, of the scattered wave are related to the corresponding 
coefficients a:,, of the incident wave by 

a+ = T") (w)a" (2) 
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where here and throughout this article matrix notation in the representation lmu is used. 
TO), i = A, B, C, . . . is the scattering matrix for the sphere under consideration. For a 
spherical scatterer we have in general 

q;;;l,m,r, = Q611,8mm,80,Y. (3) 

Explicit expressions for 7j, have been given in 111. We shall see, however, that the diagonal 
form of the T-matrix described by equation (3) does not apply to the effective CPA scatterer 
and for that reason, in what follows, we keep the general form of equation (2). Denoting 
by (T) the CPA T-matrix (which is to be determined), we introduce AT@) as follows: 

T"'(w) = (T(o)) + AT(')(o). (4) 

Let us consider a plane EM wave incident on the non-periodic ZD array of spheres described 
in section 2.1. If we forget, for the moment, the second term of equation (4), our array 
becomes in effect periodic and the scattered field can be written in the form 

I R 

with r, = T - R,, . kll = (kx ,  k y )  is the projection of the wavevector of the incident wave 
on the plane of the spheres. The procedure for calculating the coef6cients b& has been 
described in [1,2]. 

Let us now replace the scatterer (T) at the site Rn = 0 by the actual i scatterer. Then 
the scattered wave from this sphere consists of the corresponding term (Rn = 0) of (5) and, 
to begin with, an additional term given by (1) with z&r) = h:(kr) and coefficients given 

AT(') (ao + b') (6) 

by 

where U represents the coefficients in the spherical-wave expansion about = 0 of the 
wave (5) with the R, = 0 term subtracted (see [I]). The wave (6) will be multiply scattered 
by the periodic array of spheres, including that at R, = 0, producing a further contribution 
to the incident on the sphere at the origin wave, which is given by equation (1) with 
u(kr)  = j l (k r )  and with coefficients giyen by 

&wAT(i)(ao + b') (7) 

where Dw represents the contribution of all possible paths by which a wave outgoing from 
the site R, = 0 produces an incident wave on the same site after scattering in all possible 
ways by the scatterers (T) at all sites of the lattice, including R,, = 0. Because of (7) 
there will be a further contribution to the scattered wave from the sphere at the origin with 
coefficients given by 

A T ( ' ) ? ) ~ A T ( ~ ) ( ~  + v). (8 )  
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The process is repeated infinitely many times and this leads to the following expression for 
the contribution to the coefficients of the scattered wave from the sphere at R, = 0, due to 

(I + AT(~)DW + AT(~)DWAT(~)D~ + , ..)AT(~)(~O + b’) = (1 - AT(~)EP)-’AT(~)(~O + b’) 

(9) 

N Stefanou and A Modinos 

AT(’) : 

where I is a unit matrix. In order to proceed further we need an explicit formula for DW. 
We find (see appendix) that 

(10) D -03 (w) = 1 dZIcil (I - C2(kll; w)(T(w))]-’C2(kl,; w) 
SO SBZ 

where 80 is the area of the surface Brillouin zone (SBZ) associated with the 2D periodic 
lattice, and 

where s l ~ ~ , ; c m  and QfL,;cm are, as it turns out, the matrices given in the appendix of [2]. 

demanding that 
We obtain the CPA matrix (T) in the manner originally proposed by Soven [6], by 

where Ci denotes the concentration of scatterer i .  Obviously 

cci  = 1. 
i 

Equation (12) tells us that, with (T) determined in this way, the correction to the scattering 
due to the difference of the actual scatterers from the CPA scatterer vanishes on the average. 
In principle we may have a large number of terms in the sum over i, corresponding to 
the variety of scatterers present. In our examples (section 3) we consider the simplest case 
i = A, B, where B corresponds to a ‘vacant’ site. In the case of only two different scatterers, 
it can be shown that equation (12) can be written as 

(T) = CAT‘A’ + CBT” - AT(A)DmAT’B). (14) 

The mahix (T), which enters the above equation within ATV) and DOo (see equation (lo)), 
is to be found by solving this equation numerically (see next section). 

2.3. Numerical evaluation of (T) 

We now turn to the numerical evaluation of (T). This is achieved by solving equations (IO) 
and (14) by an iterative procedure. Using a reasonable input for (T) (the ATA matrix 
 CAT^ + CeTB) we obtain Dm from equation (10). Substituting Dm in (14) we obtain an 
output value for (T). The whole procedure is repeated, using as input at each stage of the 
iteration a mixture of the input and output (T) of the previous iteration, until convergence 
is attained. This simple mixing scheme 1131 leads to convergence but not as fast as the 
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Chebychev iteration scheme [I41 or quasi-Newton-Raphson algorithms 1151. We tried the 
simple mixing and the Chebychev iteration schemes. Approximately 30 iterations gave 
good convergence in all the cases that we examined. 

The angular momentum space is truncated by introducing an angular momentum cut- 
off I,,,,. Therefore, all the matrices in the representation lmo have the dimensions 
2,,,,(Im+2) x ZI-.(I,,,,+Z). We note that the CPA matrix (T) is in general non-diagonal, 
even in the case of spherical scatterers A and B, because of the last term in equation (14). 
However, in this case, one can restrict (T) to a block-diagonal form. Indeed, the symmetry 
properties of and a(') are such (see appendix of [a]) that f2 has a block-diagonal 
form with two blocks of dimensions I,,,,(I,,,, + 2) x i,,,,(I- + 2) each, provided that the 
representation basis is ordered in the following way: odd ( I  + m)E; even ( I  + m)H; odd 
( I  + m)H; even ( I  + m)E. Therefore, if the input (T) is block diagonal, DOo calculated 
from (IO) is block diagonal and, therefore, the output (T) calculated from (14) is also block 
diagonal. In this manner, the dimensions of the matrices involved in the calculation are 
reduced, and so is the CPU time. 

The evaluation of Dm requires a numerical integration within the SBZ (see equation (IO)). 
Transformation of the integrand under the symmetry operations of the point group of the 
lattice in order to reduce the integration within the irreducible part of the SBZ is not in 
the present case profitable. It appears that numerical integration within the full SBZ is 
computationally more efficient. For this purpose, one can use a set of special points with 
corresponding weights, generated using the algorithm of Cunningham [16]. Also, the SBZ 
(square in our applications) can be subdivided into small squares, within which a nine-point 
integration formula [17] is very efficient. In general, using a set of about 100 points within 
the full SBZ, we obtained good convergence by both methods. 

Once the CPA matrix (T) is evaluated, the scattering of an incident wave by the ordered 
array of these scatterers proceeds in the manner described earlier. We note that, in applying 
the formulae of [2], only the term corresponding to g = 0 needs to be retained in all the 
cases examined. 

3. Applications 

We applied our method to the calculation of the absorbance of light by disordered 20 arrays 
of plasma spheres. Consider a square lattice with a fraction CA of its sites occupied at 
random by identical plasma spheres and assume that the remaining sites are empty. Let us 
also assume that the optical response of the individual sphere is adequately described by 
the Drude dielectric function 

Following Persson and Liebsch [9] we have taken h a ,  = 6.93 eV and hr-I = 0.158 eV 
which, it is assumed, are appropriate for silver particles. 

Firstly, and in order to test our method, we considered a very low concentration 
CA = 0.3 of spheres of radius S = 50 A arranged on a square lattice with lattice constant 
a = 100 A. In this case, one expects the electrostatic approximation of [9] to be adequate, 
and this allows a meaningful comparison between our results and their results. 

One obtains a measure of the effect of disorder by comparing the absorbance of light 
by the disordered, partly empty lattice with lattice constant a ,  with that calculated for an 
ordered, fully occupied lattice with a lattice constant a' = a/& (= 182.57 A) so that the 
coverage (number of spheres per unit area) is the same in both cases. 
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In the electrostatic limit, one obtains two peaks in the absorbance of an ordered square 
lattice of plasma spheres. The low-energy peak corresponding to a parallel mode resonance 
(the charge oscillates parallel to the plane of the spheres) is excited by the component of the 
electric field parallel to the plane. The high-energy peak corresponding to a normal mode 
resonance (the charge oscillates normal to the plane of the spheres) is excited by the normal 
component of the electric field. The resonance frequencies are given by 191 

R I  = n ( l +  S’U,)’’~ (17) 

where Q = cop/& is the resonance frequency of a single plasma sphere and U0 = 9 . 0 3 ~ ~ “ ~  
for a square lattice. 

ATA calculations [5] suggest that the disorder induces a shift of the parallel (normal) 
mode absorbance peak to lower (higher) frequencies relative to the corresponding peaks of 
the corresponding ordered structure. We see from table 1 that the shifts predicted by the ATA 
calculation are in the same direction but smaller, especially in the case of the parallel mode, 
than those of the CPA calculations. The ATA in the electrostatic limit replaces the partly 
empty (disordered) lattice by one fully occupied by spheres characterized by an average 
polarizability CA(YA(W), where 

is the polarizability of the single plasma sphere. Therefore, the resonance frequencies in 
the ATA scheme are given by equations (16) and (17) with S3 and a’ replaced by C*S3 
and n a ‘ ,  respectively. The values of QII and QI evaluated in this way for the ordered 
slmcture and for the disordered structure (in tbe ATA scheme) are in excellent agreement with 
the results of the exact treatment [5] of these quantities (reported in table I), as expected. 
At low coverages the electrostatic approximation is valid. 

Table 1. Position of qbbsorbmce peaks 

Ordered structure 3.81 4.36 
ATA 3.64 4.61 
CPA 3.33 4.70 
[91 3.20 4.80 

Figure 1 shows the absorbance as a function of the photon energy of p-polarized light 
incident at an angle 0 = $ (kll = (k11.0) and the electric field lies in the plane of 
incidence). The broken curve shows the absorbance of the ordered array of spheres. We 
see quite clearly in the CPA results the shift of the parallel mode resonance to lower energies 
and that of the normal mode resonance to higher energies. The positions of the shifted peaks 
are almost identical with those evaluated in the electrostatic approximation by Persson and 
Liebsch [9] (see table I). The same applies to the shape of the peaks, and especially to 
that of the parallel mode resonance which is broadened to a larger degree because of the 
variance in the distribution of the interaction between neighbours (see [9)). 

We must now emphasize that our method, unlike that in [9], is not restricted to low 
frequencies and/or small concentrations of spheres. To demonstrate this we calculated the 
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Figure 1. Absorbance of ppolarized light of angular frequency o incident at an angle 8 = 4. 
on a disordered m y  of plasma spheres of radius S = 50 A apcupying mdomly 25% of the 
s i t s  of a squpe lattice of lattice constant a = 100 A (-) and on an ordered square a m y  of 
plJsma spheres of radius S = 50 A with lattice constant II = 182.57 A (- - -). 

Figure 2. Absorbance of normally incident light of angular frequency o on an m y  of plasma 
spheres of radius S = 80 A occupying rnndomly 75% of the sites OC a square Imice of lattice 
constant r? = 200 A (-). The absorbanceaf the wmsponding ordered lattice (a = 230.94 A) 
is also shown (- - -). 

absorbance as a function of the photon energy of light incident normally on a plane of 
spheres of radius S = 80 A occupying randomly 75% of the sites of a square lattice of 
lattice constant a = 200 A. The results are shown in figure 2. The broken curve in this 
figure gives the absorbance of the corresponding (in the manner defined earlier) ordered 
lattice. The main feature in the absorbance curve is the appearance of a resonance peak 
which does not exist withiin the electrostatic approximation. In order to obtain this additional 
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peak which comes about through interparticle scattering of light, we need to maintah in 
the angular momentum expansions terms up to l,, = 4. We see that the disorder does not 
destroy the additional peak. The main effect of the disorder appears to be a slight shift of 
the resonance peaks accompanied by broadening of the peaks. At the same time we see an 
increase in the overall absorbance by about 30%. 

Finally, we would like to add that the formalism that we have presented in this paper 
can be applied to a variety of problems (for a list of these see. e.g., [9]) and we hope to be 
able to deal with some of these problems in future publications. 

N SIefanou and A Modinos 

Appendix 

An outgoing wave spherical about R,, given by 

can be expanded into spherical waves about R,,, incident on &. We have 

where 

b'(%) = A(%m)bf(%) (A3) 

with Et,,,, = R, - R,. The matrix b(%,) = fim can be obtained from the formalism in 
[1,2]. We obtain 

(A51 

where 

&,(I'm'; I"m") E YI~(~)YI,~,(?)Y,"-~,,(~) d? 

and C(l1lzl; mlm - m,) are Clebsch-Gordan coefficients [MI. 
J (-47) 
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We now introduce the propagator b" which gives the coefficients (in an expansion 
such as (A2)) of the wave incident on the sphere at Rn, due to an outgoing wave from 
the sphere at R,. An outgoing wave (Al) from the mth sphere can reach the nth sphere 
directly and in that way contributes to the incident wave on that sphere the term (A2) or can 
reach it after scattering any number of times by any number of scatterers (including those 
at m and n )  of the periodic array of spheres. Let b""' be the sum of the contribution to the 
coefficients of the incident wave on R, from all possible scattering paths originating from 
an outgoing wave from the mth sphere. One can easily prove by iteration the following 
equation: 

where (T) is the matrix (to be determined within the CPA formalism) which describes the 
scattering by a single effective scatterer, as we have already explained. fi"' is given by 
equations (A4) and (A5) for n # m and, by definition, equals zero for n = m. 

We solve equation (AS) through a Fourier transformation as follows. Because of the 2D 
periodicity of the system, p'" is given by a Fourier integral over the SBZ: 

b""(w) = 1 dZk,l exp(ik1 . R,,)D(kll; w )  ('4% 
SO SBZ 

with 

Substitution of (Al l )  into (A9) gives, when R = m = 0, equation (10). 
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